Modeling and Evaluation of PFOS Retention in the Unsaturated Zone above the Water Table

[elementor-template id="30094"] Published: 2024 Authors: Hiroko M. Hort, Emily B. Stockwell, Charles J. Newell, Joseph Scalia IV, Sorab Panday Abstract Understanding the retention of per- and...

Modeling and Evaluation of PFOS Retention in the Unsaturated Zone above the Water Table

TRRP Training: 2022 Program

presented by: GSI Environmetal Inc.

Texas Risk Reduction Program regulations (TRRP; 30 TAC 350) establish consistent risk-based protocols for assessment and response to soil, groundwater, or surface water impacts associated with environmental releases of regulated wastes or substances.

Presented by GSI Environmental Inc., this popular and informative training series is a must for professionals who need a working understanding of TRRP and those needing to stay up-to-date with the latest TCEQ TRRP guidance and policies.

TRRP Training Course (2 Days): Provides an overview of the TRRP framework and step-by-step training on property assessment and response action procedures established under the TRRP rule

Attendees will become acquainted with rules, key guidance and policies covering affected property assessments, protective concentration levels, and response actions. The course material presents strategies for efficient project management in compliance with TRRP and explains the various report forms adopted by TCEQ.

TAEP image

Sponsored by:
Texas Association of Environmental Professionals (TAEP) TAEP is the premier organization for environmental professionals in the State of Texas. The goals of TAEP include the advancement of the environmental profession and the establishment of a forum to discuss important environmental issues. TAEP members receive a 10% discount. Please call 713.522.6300 for the code.

Dates and Location

Dates

June 14th and 15th, 2022

Location

Crowne Plaza River Oaks 2712 SW Freeway Houston, Texas 77098 713.523.8448 http://www.crowneplaza.com/

Price and Registration

Early-Bird Price

(Paid by May 1, 2022)
$XXX

Standard Price

(Paid after May 1, 2022)
$XXX

TAEP Membership Price

$XXX

Government Price

$XXX
Lodging and meals are not
included in course cost

Published: 2024

Abstract

Understanding the retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone is vital to the management of impacted sites. This paper examines PFAS retention in the unsaturated zone above the water table using a mathematical model, MODFLOW-USG-Transport PFAS or “USGT-PFAS.” The USGT-PFAS model incorporates adsorption onto air-water interfaces, providing a more comprehensive understanding of PFAS retention near the water table and release to groundwater. Modeling of a hypothetical perfluorooctane sulfonic acid (PFOS) site under various idealized site conditions illustrated that the impacts on PFOS retention from smallest to largest were water table fluctuations, low episodic recharge, constant recharge, moderate episodic recharge, constant recharge with water table fluctuations, and high episodic recharge. PFOS retention also varied by sand type, with greater retention occurring in simulations incorporating coarse sand with low capillary potential versus fine sand with high capillary potential. PFAS management strategies were also explored, including the adaptation of gas sparging, a method traditionally used for volatile organic compounds. Gas sparging can concentrate PFAS in groundwater and the vadose zone around the water table, facilitating retention or removal. Model simulations for a simplified hypothetical site demonstrated that PFAS can be substantially retained in the unsaturated zone once gas sparging results in an upward concentration of PFAS in groundwater and the unsaturated zone near the water table. Modeling can aid in understanding PFAS behavior but requires simulation of multiple interrelated processes to correctly predict PFAS fate and transport in subsurface conditions.