Sponsored by:
Texas Association of Environmental Professionals (TAEP)
TAEP is the premier organization for environmental
professionals in the State of Texas. The goals of TAEP include
the advancement of the environmental profession and the
establishment of a forum to discuss important environmental
issues. TAEP members receive a 10% discount. Please call
713.522.6300 for the code.
Published: 2022
Authors: Poonam R Kulkarni, Stephen D. Richardson, Blossom N. Nzeribe, David T. Adamson, Shashank S. Kalra, Shaily Mahendra, Jens Blotevogel, Andrea Hanson, Greg Dooley, Sharyl Maraviov, Jovan Popovic,
A mobile treatment system equipped with a custom-built sonolysis reactor was deployed at a site in California to treat groundwater impacted with per- and polyfluoroalkyl substances (PFAS). Extracted groundwater was treated in a 700-kHz sonolysis reactor for batch treatment under different power densities (122, 203, and 305 W/L
) and operating temperatures (15°C and 25°C). Sonolytic treatment resulted in 93%–100% removal of the 15 PFAS identified in the groundwater, and PFAS degradation rates increased proportionally with increasing power density and temperature at operating conditions of 25°C. For all experimental conditions evaluated, greater removal was observed for perfluorinated carboxylic acids (PFCAs) [e.g., 95.1% to 100% for perfluorohexanoic acid (PFHxA)] than perfluorinated sulfonic acids (PFSAs) [68.3% to 95.2% for perfluorohexane sulfonate (PFHxS)] for similar carbon chain lengths. Similarly, greater removal was observed for longer-chain PFAS [e.g., 95.4% to 99.5% for perfluorooctanoic acid (PFOA)] compared with short-chain PFAS [56.9% to 90.4% for perfluorobutanoic acid (PFBA)]. Substantial removal of total oxidizable precursors (TOP) and specific precursors [65.5% to 99.1% for 4:2 fluorotelomer sulfonate (FTS), 6:2 FTS, 8:2 FTS, and perfluorooctane sulfonamide (FOSA)] was also observed under all conditions tested. Additionally, formation of nitrate was observed, with concentrations below maximum contaminant levels (MCLs). Overall, the results demonstrate that sonolysis treatment of PFAS-contaminated groundwater can effectively degrade PFAS without the formation of short-chain PFAS and the oxidation byproducts chlorate and perchlorate.