PFAS Monitored Retention: A Framework for Managing PFAS-Contaminated Groundwater Sites

TRRP Training: 2022 Program

presented by: GSI Environmetal Inc.

Texas Risk Reduction Program regulations (TRRP; 30 TAC 350) establish consistent risk-based protocols for assessment and response to soil, groundwater, or surface water impacts associated with environmental releases of regulated wastes or substances.

Presented by GSI Environmental Inc., this popular and informative training series is a must for professionals who need a working understanding of TRRP and those needing to stay up-to-date with the latest TCEQ TRRP guidance and policies.

TRRP Training Course (2 Days): Provides an overview of the TRRP framework and step-by-step training on property assessment and response action procedures established under the TRRP rule

Attendees will become acquainted with rules, key guidance and policies covering affected property assessments, protective concentration levels, and response actions. The course material presents strategies for efficient project management in compliance with TRRP and explains the various report forms adopted by TCEQ.

TAEP image

Sponsored by:
Texas Association of Environmental Professionals (TAEP) TAEP is the premier organization for environmental professionals in the State of Texas. The goals of TAEP include the advancement of the environmental profession and the establishment of a forum to discuss important environmental issues. TAEP members receive a 10% discount. Please call 713.522.6300 for the code.

Dates and Location

Dates

June 14th and 15th, 2022

Location

Crowne Plaza River Oaks 2712 SW Freeway Houston, Texas 77098 713.523.8448 http://www.crowneplaza.com/

Price and Registration

Early-Bird Price

(Paid by May 1, 2022)
$XXX

Standard Price

(Paid after May 1, 2022)
$XXX

TAEP Membership Price

$XXX

Government Price

$XXX
Lodging and meals are not
included in course cost

Published: 2025

Authors:  David T. AdamsonCharles J. NewellPoonam Kulkarni, Hans Stroo

Abstract

Groundwater sites contaminated by per- and polyfluoroalkyl substances (PFAS) present unique and significant challenges, including their widespread occurrence and persistence and stringent remediation objectives. While traditional monitored natural attenuation (MNA) has proven to be an effective remedial option for many degradable contaminants, its direct application to PFAS has been limited due to these chemicals’ inherent stability. However, the development of PFAS monitored retention (PMR) broadens the scope of MNA, incorporating an understanding of how retention processes—such as sorption, matrix diffusion, and precursor retention—help to mitigate PFAS mobility and mass discharge in the environment. This paper summarizes PMR, discussing its evolution from traditional MNA, key retention mechanisms, evaluation methodologies, and potential site-specific and broader applications. PMR offers a scientifically robust, economically viable approach for managing PFAS-contaminated groundwater sites when immediate threats to receptors are absent or as an interim remedy pending the development of cost-effective in situ destruction technologies.