Data Managment Tool

TRRP Training: 2022 Program

presented by: GSI Environmetal Inc.

Texas Risk Reduction Program regulations (TRRP; 30 TAC 350) establish consistent risk-based protocols for assessment and response to soil, groundwater, or surface water impacts associated with environmental releases of regulated wastes or substances.

Presented by GSI Environmental Inc., this popular and informative training series is a must for professionals who need a working understanding of TRRP and those needing to stay up-to-date with the latest TCEQ TRRP guidance and policies.

TRRP Training Course (2 Days): Provides an overview of the TRRP framework and step-by-step training on property assessment and response action procedures established under the TRRP rule

Attendees will become acquainted with rules, key guidance and policies covering affected property assessments, protective concentration levels, and response actions. The course material presents strategies for efficient project management in compliance with TRRP and explains the various report forms adopted by TCEQ.

TAEP image

Sponsored by:
Texas Association of Environmental Professionals (TAEP) TAEP is the premier organization for environmental professionals in the State of Texas. The goals of TAEP include the advancement of the environmental profession and the establishment of a forum to discuss important environmental issues. TAEP members receive a 10% discount. Please call 713.522.6300 for the code.

Dates and Location

Dates

June 14th and 15th, 2022

Location

Crowne Plaza River Oaks 2712 SW Freeway Houston, Texas 77098 713.523.8448 http://www.crowneplaza.com/

Price and Registration

Early-Bird Price

(Paid by May 1, 2022)
$XXX

Standard Price

(Paid after May 1, 2022)
$XXX

TAEP Membership Price

$XXX

Government Price

$XXX
Lodging and meals are not
included in course cost

Data Management Tools

Widely used tools for understanding and analyzing environmental site data

GSI has developed multiple free software packages that are designed to perform valuable analysis of data of long-term monitoring data.  Understanding these data and understanding how monitoring programs can be optimized are critical elements of effective site management and closure.

These software tools were developed to support federal clients such as the Air Force but can be used at any site to establish trends in concentration or mass over time.  The goal is to provide users with technically sound, statistically validated approaches for demonstrating plume stability and remedy performance to optimize site management.

Key data management and statistical analysis tools developed by GSI include:

  • MAROS
  • GSI Mann-Kendall Toolkit

MAROS

Comprehensive tool for optimizing long-term monitoring programs

The Monitoring and Remediation Optimization System (MAROS) software was developed by GSI as a public-domain, data management and evaluation tool to improve long-term groundwater monitoring (LTM) programs.  It was originally developed in 1998 on behalf of the Air Force Center for Engineering and the Environment (AFCEE; now known as the Air Force Civil Engineering Center) to support their portfolio of groundwater sites.

MAROS includes both: i) optimization routines to help determine the appropriate number of sample locations, sampling frequency, and laboratory analytes for site monitoring objectives, and ii) statistical analysis tools to evaluate plume stability conditions and remedy performance.

The latest version of this software (MAROS 3.0) includes several new and improved algorithms to review groundwater networks for optimized data collection.  It is a Microsoft Access database application that employs simple statistics and decision frameworks to prioritize data collection efforts and link data to defensible site management decisions. The goal is to provide the user with more options to compare different network configurations. MAROS interactive, allowing the user more options to remove locations and review the resulting plume stability and concentration uncertainty metrics. Results generated from the software tool can be used to develop lines of evidence, which, in combination with professional judgment, can be used to inform site management decisions for safe and economical long-term monitoring of groundwater plumes. The MAROS tool can be used to help design and calculate remediation performance metrics and as a tool to evaluate progress toward site remedial goals.

Unlike many other software applications, MAROS uses the full analytical dataset over time, including both spatial (x,y coordinates) and temporal (all analyses over the time period of interest) data to evaluate contaminant plumes. The software can analyze data for up to five COCs and from 6 to over 100 wells in one run. The software contains modules that prioritize constituents, calculate summary statistics, determine temporal trends at individual wells (using both Mann-Kendall (MK) and Linear Regression (LR) techniques), and calculate plume stability metrics and their trends over time (i.e. total dissolved mass, center of mass and spread of mass). Spatial analysis of well distribution is performed using a Delaunay Triangulation/Voronoi Diagram spatial geometry algorithm. Optimization analyses include identification of redundant locations using a nearest neighbor and a qualitative approach exploiting statistics for spatial geometry, and estimation of plume concentration uncertainty to recommend new well locations and a sampling frequency module to recommend optimal sampling intervals based on the rate of concentration change.

GSI Mann-Kendall Toolkit

Simple tool for performing concentration trend analysis

The GSI Mann-Kendall Toolkit is a free, simple, easy-to-use software tool to help environmental professionals efficiently conduct concentration trend analyses for any groundwater constituent.  Programmed in the Microsoft Excel spreadsheet environment, the software employs the same Mann-Kendall plume stability methodology that was previously developed for the MAROS software (Aziz et al., 2003; AFCEE, 2004).  This software tool can be used to demonstrate the plume stability condition (expanding, stable, or decreasing) and track the progress of remediation efforts, in a quantitative and consistent manner for consideration by both site managers and regulatory personnel.

Analysis of the trend of constituent concentrations in affected groundwater plumes has many applications in groundwater plume management and remediation.  Regulatory programs typically require demonstrating that groundwater plumes are stable or controlled to confirm protective conditions.  Monitored Natural Attenuation (MNA) is increasingly being used as a remedy for cleanup actions at sites with affected soils and/or groundwater.  A primary line of evidence supporting MNA as a remedy is demonstration of a stable or shrinking plume condition, based upon historical monitoring data (ASTM 2004; USEPA 1999).  Evidence for the discontinuation of extraction-based remedies often includes demonstration of stable or shrinking plumes after shut-down of extraction systems.  Formal evaluation of plume stability can be accomplished using a variety of statistical methods, of which the Mann-Kendall protocol is one of the most commonly used and widely applicable tools.